COMPRESSIVE STRENGTH STUDY OF GREEN CONCRETE BY USING FERROCK

KAVITA SINGH

Head of the Department & Assistant Professor Department of Civil Engineering ITM Vocational University, Vadodara. Email: <u>kavitas@itmvu.in</u>

ABSTRACT:

As a part of development, rate of building construction is also high, so it means there is lots of use of concrete. It has been observed that 0.9 tons of CO_2 is produced per ton of cement production. Thus, by the use of green concrete it is possible to reduce the CO_2 emission in atmosphere towards eco-friendly construction. In this project there is replacement of cement with the percentage of ferrock. Ferrock is a waste material of steel and having a tensile property. In this M20 Grade concrete is used and for that the mix design was done having the different composition of cement, Fine Aggregate, Coarse Aggregate, Ferrock and Water. The cubes are tested after the curing duration of 7 days, 28 days, and 56 days. In this research work, there was replacement of the cement with the ferrock having a percentage variation 5%, 10 %, 15%, 20%. With the replacement of cement with ferrock it was found that compressive strength of the green concrete was increased, and durability of the concrete was also increased. Also, it was economical as ferrock is a waste material which is available free of cost, so it reduced the overall cost of the work. Also, the Ferrock has a property to absorb the Carbon dioxide from the environment so it is also reducing the air pollution.

Keywords: Green Concrete, Concrete Mix Design, Ferrock, Carbon Dioxide, Compressive Strength.

1. INTRODUCTION

India is a developing country and due to this reason various construction work is going on. The main material which is used as construction work in India is Cement. Cement is responsible for the huge production of carbon dioxide in the environment. This huge production of carbon dioxide in the environment leads to the environment problems such as air pollution, skin disease, respiratory problems, global warming, climate change etc. Green concrete does not have any relation with the green colour. Green concrete means to protect the environment by using the waste product in a constructive way. Ferrock is created from waste steel dust (which would normally be thrown out) and silica from ground up glass, which when poured and upon reaction with carbon dioxide creates iron carbonate which binds carbon dioxide from the atmosphere into the Ferrock. Ferrock are tensile in nature which leads to increase in the compressive strength and durability of the green concrete.

2. OBJECTIVES

Following are the objectives of this research work:

- To study the effect of Ferrock on the Environment.
- To study the effectiveness of concrete by the partial replacement of the cement with ferrock.
- To determine the compressive strength of new mix design of grade M 20.
- To determine the test result for the compressive strength of green concrete.
- To determine the optimum percentage of ferrock in cement so that we can achieve maximum compressive strength.

3. RESEARCH METHODOLOGY

To fulfil the above objectives following research methodology is applied:

- To do the literature review on the green concrete.
- To do the deep study of the different ingredients of the green concrete.
- To do the Mix Design for M 20 Concrete as per the Indian Codal Provisions.
- To cast cubes by using different ingredients as per the Indian Standards.
- To test the casted cubes for strength after 7, 28 and 56 days of curing respectively by performing compressive strength test.
- To compare between conventional concrete and green concrete based on various parameters.

4. LITERATURE REVIEW

Some of the research papers literature review are mentioned here. In this different researchers used the different material for the casting of green concrete in different proportions which is mentioned below and also shown the research gap (future work scope).

Sr. No.	Paper Name	Literature Review	Research Gap
1.	High Volume Fly	Class F Fly ash is used for	In initial phase the
	Ash Mixed Green	replacing the cement and M 30	compressive strength of
	Concrete For Civil	grade of Concrete is used having	green concrete is less as
	Engineering	a two different proportions of	compare to the normal
	Purposes ^[21] .	water i.e. 0.42 and 0.40 as per	concrete and its flexural
		Indian Codal Provision. As per	strength is also less.
		the Codal provision 25% of the	
		cement content was replaced by	
		Fly Ash. The samples are tested	

Table 1: Literature Review

		for a compressive strength at a	I
		for a compressive such and	
		duration of 28 days, 56 days, and	
		90 days. High volume fly ash	
		added with green concrete was	
		having higher strength and	
		durability as compare to normal	
		concrete.	
2.	Experimental Study	Addition of micro silica in	Compressive strength of
	on Green	cement reduces the air pollution.	concrete is decreasing
	Concrete ^[20] .	The optimum replacement of	after the 15 %
		cement with silica 5 % to 15 %	replacement of cement
		leads to increase in strength	with silica. Silica is also
		whereas 20 % replacement leads	the product which is
		to the decrease in the strength. It	responsible for the air
		gains more strength in less time	pollution.
		as silica fume particle size is very	
		small as compare to the cement.	
		Ry replacing the fine aggregate	
		with demolished brick will not	
		lead to increase in strength of	
		concrete but overall cost of the	
		concrete but overall cost of the	
		project will be reduced about	
	~ ~ ~	20 %.	
3.	Green Concrete: An	This paper deals with the usage	The study on the impact
	Innovative Approach	of different by products such as	of long-term properties
	to Sustainable	fly ash, pozzocrete, used foundry	of concrete such as creep,
	Development ^[8] .	sand etc. It also deals with	deflection, and shrinkage
		finding out the compressive	etc.
		strength of the concrete when the	
		cement is replaced by Pozzocrete	
		P60 as 30 % by weight of cement	
		and fine aggregate are replaced	
		by foundry sand 10 %, 25 % and	
		50 % by weight of cement. This	
		paper concludes that the use of	
		Pozzocrete P 60 and foundry	

		sand in the form of partial	
		replacement of cement and fine	
		aggregate is quite feasible for	
		strength.	
4.	A Review on the	It includes the convenience of the	The drawback of this
	Study of Green	usage of various by products	work is it has less
	Concrete ^[18] .	such as dust, fly ash, marble,	flexural strength, high
		plastic waste, marble granules,	water absorption, higher
		silica fumes, blast furnance slag	shrinkage, and creep.
		etc. Use of such materials	
		approximately 20 % of cement.	
		Green concrete has greater	
		strength and durability as	
		compare to the conventional	
		concrete.	
5.	Green Concrete for	Waste material has a significant	Did not considered the
	Better Sustainable	potential on green concrete. To	by-products effect on
	Development ^[19] .	manufacture economical and	strength of the concrete.
		environment friendly	
		concrete, the replacement of	
		traditional ingredients of	
		concrete by waste materials and	
		by products plays a very	
		important role . It gives	
		opportunity to produce	
		environment friendly concrete .	

5. MATERIAL USED

5.1 Cement

In this project work, 53 grade of Ordinary Portland Cement is used. As per the Indian Standard the different tests are done for the accuracy such as Fineness Test, Soundness Test, Consistency Test & Initial and Final Setting time. Apart from this the other things regarding cement are monitored such as color test, presence of lumps, adulteration test, temperature test, float tests, strength test and date of packaging. After the testing it was found that this cement can be used for the practical purpose.

5.2 Aggregate

Aggregate is one of the most important ingredient of the concrete which is responsible to provide the strength to the structure. To get the better result we used the angular aggregate and as per the Indian Codal Provisions we did the test such as crushing test, Abrasion test, Impact test, Soundness test, Shape test, Specific Gravity and Water Abosrption Test. In these test the sample is passed as per the Indian Codal Norms.

5.3 Ferrock

Ferrock is created from waste steel dust (which would normally be thrown out) and silica from ground up glass, which when poured and upon reaction with carbon dioxide creates iron carbonate which binds carbon dioxide from the atmosphere into the Ferrock. Compared to Portland cement (made from chalk and clay and resembling Portland stone in colour), which is one of the leading types in use throughout the world today, ferrock is actually five times stronger. It can withstand more compression before breaking and is far more flexible, meaning it could potentially resist the earth moment cause by seismic activity or industrial processes. One of the unique properties of ferrock is that it becomes even stronger in saltwater environments, making it ideal for marine base construction projects. And rather than emitting large amounts of CO2 as it dries, ferrock actually absorbs and binds it! These results in carbonnegative process that actually helps to trap greenhouse gases.

6. INDIAN CODAL PROVISIONS FOR CONCRETE MIX DESIGN

6.1 Step 1 : To Find the Standard Deviation as per Indian Standards

Step 1	f m = fck + 1.65s				
	THE STANDARD DEVIATIONS ARE				
GRADE	GRADE VALUE UNIT				
M20-M25	4	MPA			

 Table 2: Standard Deviation Value for M20 Grade Concrete

6.2 Step 2: To Determine the W/C from Curves Provided in Indian Standards

Graph 1: Selection of W/C from Curves

6.3 Step 3: Water Content and Sand Contents for Concrete Grade up to M35

 Table 3: Water Content and Sand Contents

M.S.A (MM)	W (KG/M3)	p = Fagg Vol. (% of total)
20	186	35

As per the Indian Standard for Concrete Mix:

- Fine Aggregate Zone = 2
- W/C = 0.6 upto M35
- W/C = 0.35 > M35
- Compaction Factor = 0.8
 - Estimate water content & sand content for concrete grades up to M35/ above M35 (Adjustments)
 - For change in values in water cement ratio, compaction factor and sand belonging to zone 3 the following adjustment required.

Table 4: Percentage of Sand in Total Aggregates

Change in Condition	Water Content	Percentage of sand in total aggregates
For decrease in water cement ratio		
(0.6 - 0.5) that is 0.1	0	-2
0.1/0.05*1 = 2.0		
For increase in compaction factor	3	0
(0.9 - 0.8) = 0.1		
For sand compacting to zone 3	3	-3.5

6.4 Step 4 : To Calculate the Cement Content and Aggregate Content as per IS

Calculate cement content, aggregate contents,

- $w/c = Min (W/C_{curve}, W/C_{durability})$
- $C = Max (W/w/c^*, C_{durability})$

 $V = [W + C/S_{C} + 1/p \times F_{agg} / S_{Fagg}] \times 1/1000$ $V = [W + C/S_{C} + 1/(1-p) \times C_{agg} / S_{Cagg}] \times 1/1000$

Table 5: IS Requirements for RCC

IS requirement (RCC)								
Exposure	ExposureMin CMax w/cMin Grade							
Mild	300	0.55	20					

Where,

- MSA (MM) = 20
- Content (%) = 2

7. MIX DESIGN FOR M 20 GRADE CONCRETE AS PER INDIAN STANDARDS

7.1 Given Data

- Grade of concrete = M20
- Grade of cement = 53 N/mm^2
- Moderate exposure zone 3 sand
- Degree of workability = 0.9 C.F
- Max. size of aggregate = 20 mm
- Angular aggregate
- Degree of quality control = good
- Type of exposure = mild

7.2 Material Testing Data

- PPC 53 grade cement is used, with 28 days strength 51N/mm²
- Specific gravity of cement = 3.15
- Bulk density = 1450 kg/m^3

 Table 6: Properties of fine and Coarse aggregate

Aggregate	Fine aggregate	Coarse aggregate
S.G	2.66	2.75
Bulk density	1700	1800
Water absorption	1	0.5
Free moisture	2	NIL

7.3 To Find the Target Mean Strength for M 20 Concrete

Target mean strength (Fm) = fck + 1.65s

 $Fm = 26.6 \text{ N/mm}^2 \text{ (MPA)}$

7.4 Selection of W/C from Curve

W/C = 0.5

7.5 Estimate Water Content and Sand Contents for M 20 Grade Concrete

For maximum size of aggregate of 20 mm, the air content is taken as = 2

Water = 186 kg/m^3

- Sand = 35 % of total aggregate by absolute volume
- Required water content = $191.58 \text{ lit} / \text{m}^3$
- Required sand content = 31.5 %

7.6 Determination of Cement Content

- Water cement ratio = 0.5
- Water = 191.58 lit. or kg
- Cement = 383.16 kg/m^3 > 300 kg/m^3 , therefore O.K.

7.6.1 IS Method

Calculate cement content, aggregate contents,

- $w/c = Min (W/C_{curve}, W/C_{durability})$
- $C = Max (W/w/c^*, C_{durability})$

 $V = [W + C/S_{C} + 1/p \times F_{agg} / S_{Fagg}] \times 1/1000$ $V = [W + C/S_{C} + 1/(1-p) \times C_{agg} / S_{Cagg}] \times 1/1000$

7.7 Determination of Fine Aggregate and Coarse Aggregate

- Consider volume of concrete = $1m^3$
- Entrapped air in wet concrete = 2%
- Volume of fresh concrete $(V) = 0.98m^3$

With the quantities of water & cement per unit volume of concrete & the ratio of fine to total aggregate already determined, the total aggregate content per unit volume of concrete may be calculated from the following equations.

7.7.1 For Fine Aggregates

- Fine aggregate = 558.6966 kg mass of F.A.
- Coarse aggregate = 1256.05 kg mass of C.A.

Table 7: Quantity of Different Materials used for the Concrete

Name of the Material	Quantity in kg
Cement	383.16
Fine Aggregate	558.70
Coarse Aggregate	1256.05

 Table 8 : Variation in the Quantity of Cement when it is Replaced with Ferrock

WHEN ADDED FERROCK (%) IN CEMENT (IT IS FOR 1 M3)				IT IS FOR =		0.00337 5	M3	
% OF FERROC K	CEMEN T (KG)	FERROC K (KG)	F.A. (KG)	C.A. (KG)	CEMEN T (KG)	FERRPC K (KG)	F.A. (KG)	C.A. (KG)
0	383.16	0	558.7	1256.05	1.293	0	1.886	4.239
5	364.02	19.16	558.7	1256.05	1.229	0.065	1.886	4.239
10	344.84	38.32	558.7	1256.05	1.164	0.129	1.886	4.239
15	325.68	57.47	558.7	1256.05	1.099	0.194	1.886	4.239
20	306.52	76.63	558.7	1256.05	1.035	0.259	1.886	4.239
25	287.37	95.79	558.7	1256.05	0.97	0.323	1.886	4.239
30	268.21	114.95	558.7	1256.05	0.905	0.388	1.886	4.239
35	249.05	134.11	558.7	1256.05	0.841	0.453	1.886	4.239
40	229.89	153.26	558.7	1256.05	0.776	0.517	1.886	4.239
45	210.73	172.42	558.7	1256.05	0.711	0.582	1.886	4.239
50	191.58	191.58	558.7	1256.05	0.647	0.647	1.886	4.239
TOTAL	3161.05	1053.69	6145. 7	13816.5 5	10.67	3.557	20.746	46.629

7.8 Proportion of Material as per the Mix Design for M20 Grade Concrete

Table 9: Proportions of Material

WATER	CEMENT	F.A.	C.A.	UNIT
0.28	1	1.458129	3.278136	KG

Table 10: Total Estimate of Quantity of Material used for the Making of Green ConcreteCubes

WATE	FERROC	CEMEN	FERROC	F.A.	C.A.	NO. OF	TOTAL
R (kg)	K (%)	T (KG)	K (KG)	(KG)	(KG)	CUBES	WEIGHT (kg)
12.4966	0	7.780498	0	11.3449	25.5055	(44.621
8	0	286	0	7019	3153	0	44.031
12.4966	1	7.702693	0.0778049	11.3449	25.5055	6	44.621
8	1	303	83	7019	3153	0	44.031
12.4966	2	7.624888	0.1556099	11.3449	25.5055	6	44 621
8	2	32	66	7019	3153	0	44.031
12.4966	2	7.547083	0.2334149	11.3449	25.5055	C	44 621
8	3	337	49	7019	3153	0	44.031
12.4966	4	7.469278	0.3112199	11.3449	25.5055	(44.621
8	4	354	31	7019	3153	0	44.031
12.4966	F	7.391473	0.3890249	11.3449	25.5055	(44.621
8	5	372	14	7019	3153	0	44.631
12.4966	(7.313668	0.4668298	11.3449	25.5055	(44 (21
8	0	389	97	7019	3153	0	44.031
12.4966	7	7.235863	0.5446348	11.3449	25.5055	C	44 621
8	7	406	8	7019	3153	0	44.031
12.4966	o	7.158058	0.6224398	11.3449	25.5055	6	44 621
8	0	423	63	7019	3153	0	44.031
12.4966	0	7.080253	0.7002448	11.3449	25.5055	6	44.621
8	9	44	46	7019	3153	0	44.031
12.4966	10	7.002448	0.7780498	11.3449	25.5055	(44 (21
8	10	457	29	7019	3153	b	44.031
12.4966	15	6.613423	1.1670747	11.3449	25.5055	6	44.621
8	15	543	43	7019	3153	Ø	44.031

12.4966	20	6.224398	1.5560996	11.3449	25.5055	6	44 621	
8	20	629	57	7019	3153	0		
12.4966	25	5.835373	1.9451245	11.3449	25.5055	6	44 621	
8	23	714	71	7019	3153	0	44.031	
12.4966	20	5.446348	2.3341494	11.3449	25.5055	6	44 621	
8	50	8	86	7019	3153	0	44.031	
12.4966	25	5.057323	0 7001744	11.3449	25.5055	6	44.621	
8	33	886	2.7231744	7019	3153	0	44.031	
12.4966	40	4.668298	3.1121993	11.3449	25.5055	6	14 621	
8	40	972	14	7019	3153	0	44.631	
12.4966	15	4.279274	3.5012242	11.3449	25.5055	6	44 621	
8	43	057	29	7019	3153	0	44.031	
12.4966	50	3.890249	3.8902491	11.3449	25.5055	6	14 621	
8	50	143	43	7019	3153	0	44.031	
237.436	GRAND	123.3208	24.508569	215.554	484.605	114		
92	TOTAL	978	6	4335	0991	114		

 Table 11: Data of Green Concrete Cube

SIZE OF ONE CUBE	0.15	M ³
NUMBER OF CUBES	6	NOS.
WET VOLUME OF CUBE	0.03078	M ³
DENSITY OF CEMENT	1450	KG/M ³
WET MATERIAL	0.52	
DRY VOLUME OF CUBE	0.02025	
WATER CONTENT	0.28	

8. COMPRESSIVE STRENGTH TEST RESULT OF CUBES

Table 12: Compressive Strength og	f Cubes

SR. NO.	CUBE NO.	DAY S	STRENGTH (N/MM ²)	AVERAGE STRENGTH	FERROCK (%)			
	1		6.82					
	2	3	8.06	7.57				
1	3		7.85		00/			
1	4		18.98		070			
	5	28	20.74	20.64				
	6		22.2					

	7		21.02				
	/	50	21.03	22 (0			
	8		22.03	22.09			
	9		24.99				
	1	_	15.44	15.05			
	2	7	14.65	15.07			
	3		15.13		_		
	4	-	20.15				
2	5	28	21.53	20.76	1%		
	6		20.62		_		
	7	-	26.43				
	8	56	25.25	27.19			
	9		29.91				
	1	-	17.56				
	2	7	16.62	17.34			
	3		17.86				
	4		22.32				
3	5	28	20.28	21.92	2%		
	6		23.15				
	7		26.55				
	8	56	34.3	28.59			
	9		24.93				
	1		18.27				
	2	7	18.92	19.92			
	3	-	22.58		_		
	4		21.97				
4	5	28	22.56	22.09	3%		
	6		21.75				
	7		24.8				
	8	56	28.91	27.13			
	9		27.7				
	1		18.94				
	2	7	17.92	20.58			
	3		24.89				
	4		21.38				
5	5	28	23.46	22.77	4%		
	6		23.47				
	7		25.98				
	8	56	27.87	27.83			
	9	1	29.65				
	1		19.02				
	2	7	20.29	21.09			
6	3	1	23.98		5%		
	4		22.56				
		28	22.98	23.47			
		L	0				

	6		24.89		
	7		26.87		
	8	56	28.67	28.44	
	9	-	29.78		
	1		19.57		
	2	7	20.24	21.64	
	3		25.12		
	4		24.23		
7	5	28	23.56	24.4	6%
	6		25.43		
	7		26.97		
	8	56	29.78	29.76	
	9		32.54		
	1		20.76		
	2	7	22.81	21.81	
	3		22.87		
	4		25.46		
8	5	28	24.64	25.62	7%
	6		26.76		
	7		28.23		
	8	56	30.74	31.24	
	9		34.76		
	1		21.63		
	2	7	22.39	22.16	
	3		22.48		
	4		24.78		
9	5	28	27.59	25.94	10%
	6		25.46		
	7		36.48		
	8	56	36.34	36.67	
	9		37.2		
	1		22.35		
	2	7	23.54	22.88	
	3		22.75		
	4		29.33		
10	5	28	28.56	30.78	15%
	6		34.46		
	7		33.16		
	8	56	36.53	34.86	
	9]	34.89		
	1		20.45		
11	2	7	20.16	20.08	2007
	3	1	19.63		20%
	4	28	30.56	30.67	

5		30.26	
6		31.21	
7		28.12	
8	56	29.65	29.14
9		29.65	

9. ANALYSIS OF THE RESULT

Following are the result analysis at different percentage of replacement of cement with ferrock at the different curing period of 7 days, 28 days, and 58 days.

Graph 3: Compressive Strength of Green Concrete after 28 Days of Curing

Graph 4: Compressive Strength of Green Concrete after 56 Days of Curing

10. CONCLUSION

From Graph no.2, we get strength of concrete after 7 days:

Table 13: Compressive Strength of Green Concrete after 7 Days of Curing having a Varying %of Ferrock

% of	0	1	2	3	4	5	6	7	10	15	20
Ferrock											
Strength	7.57	15.07	17.34	19.92	20.58	21.09	21.64	22.25	22.16	22.88	20.08
(N/mm ²)											

From Graph no.3, we get strength of concrete after 28 days:

Table 14: Compressive Strength of Green Concrete after 28 Days of Curing having a varying %of Ferrock

% of	0	1	2	3	4	5	6	7	10	15	20
Ferrock											
Strength	20.64	20.77	21.92	22.09	22.77	23.48	24.41	25.62	25.94	30.78	30.67
(N/mm ²)											

From Graph no.4, we get strength of concrete after 56 days:

 Table 15: Compressive Strength of Green Concrete after 56 Days of Curing having a Varying %

 of Ferrock

% of	0	1	2	3	4	5	6	7	10	15	20
Ferrock											
Strength	22.69	27.2	28.59	27.14	27.83	28.44	29.76	31.24	36.67	34.86	32.67
(N/mm ²)											

Green concrete having reduced environmental impact with reduction of the concrete industries CO₂ emission by 30%.

➢ Green concrete is having good thermal and fire resistant.

In this concrete recycling use of waste material such as ceramic wastes, aggregates, so increased, so increased concrete industry's use of waste products by 30%.

> Hence green concrete consumes less energy and becomes economical.

> So definitely use of concrete products like green concrete in future will not only reduce the emission of CO_2 in environment and environmental impact but also economical to produce.

From the result it was concluded that compressive strength and durability of green concrete is more as compare to the conventional concrete up to 15 % replacement of cement with Ferrock and from 20% the compressive strength of concrete is decreasing.

11. FUTURE WORK SCOPE

Following are the future work scope of this work:

1. To do the parametric study based on the flexural strength of the green concrete.

2. To do the analysis with the help of software and to do parametric study based on that.

3. To do more research on ferrock as environment sustainable material.

12. REFERENCES

1. Proposal from Environmental Protection Agency, (1997) "A strengthened product - effect approach. An introduction to a debate", Ministry of Environment and Energy. Environmental Protection Agency.

2. Damtoft, J. S., (1998), "Use of Fly Ash and Other Waste Materials as Raw Feed and Energy Source in the Danish Cement Industry" Proceedings from CANMET/ACI International Symposium on Sustainable Development of the Cement and Concrete Industry, Canada.

3. Abhijeet baikerikar, (2014) " A Review on Green Concrete", Journal of Emerging Technologies and Innovative Research, Belgaum, Karnataka, India, Vol. 1, Issue 6, ISSN:2349-5162.

4. Chirag Garg & Aakash Jain, (2014) "Green Concrete: Efficient & Eco-friendly Construction Materials," International Journal of Research in Engineering & Technology 2(2).

5. Dewanshu Ahlawat, L.G.Kalurkar (2014) "Coconut Shell as Partial Replacement of Coarse Aggregate in Concrete," International Conference on Advances in Engineering & Technology.

6. Dhiraj Kumar Tiwari, Ankur Rai, Jagrit Dewan & Rohit Mathew, (2015) "Comparative Study on Green Concrete," International Journal of Advanced Research In Engineering Technology & Sciences 2(4).

7. Kakamare M.S. & Nair V.V., (2015) "Sustainable Construction Materials and Technology: Green Concrete," International Journal of Advanced Technology in Engineering and Science 3(2).

8. Mehta Neeraj, Sehraya Aashish and Malik Aman, (2015), "Green Concrete: An Innovative Approach to Sustainable Development", International Journal of Advances in Engineering and Scientific Approach, ISSN: 2349-3607, Volume 2, Issue - 9, Page 1 - 11.

9. Neeraj jain,mridul garg and A.K.minocha,(2015). "Green concrete from sustainable recycled coarse aggregates,mechanical and durability properties".

10. Xian LI, Fujin WANG, Fei LI, (2015) "Effect of Recycled Waste Brick Fine Aggregate on Compressive Strength and Flexural Strength of Mortar," 5th International Conference on Civil Engineering and Transportation.

11. Anita Bhatia, Rashmy Nair & Neeru Gakkhar, (2016) "Green Concrete A Stepping Stone For Future," International Journal of Engineering Research & Management Technology 3(1).

12. M.sadiqul Islam, (2016). "Waste glass powder as partialreplacement of cement for sustainable concrete practice".

13. Praveer Singh, Mohd. Afaque Khan & Abhishek Kumar,(2016) "The Effect on Concrete by Partial Replacement of Cement by Silica Fume," International Research Journal of Engineering and Technology 3(3).

14. Abbas mohajerani, john vajna, (2017). "Practical recycling applications of crushed waste glass in construction materials".

15. Mr. Vardhan Nagarkara, Mr. Sanket Padalkar, Ms. Samruddhi Bhamre, Mr. Akshay Tupe, (2017)" Experimental Study on Green Concrete", International Journal for Research in Applied Science and Engineering Technology, ISSN-2321-9653, Volume 5, Issue IV.

16. Mr. Vardhan Nagarkar, (2017)" Experimental study on Green Concrete", AnantraoPawar college of Engineering and Research, Pune, India. ISSN:2322-9653.

17. Nihar Khalatkar, (2017), "Study on Green Concrete", International Journal of Advances in Mechanical and Civil Engineering, ISSN:2394 - 2827, Volume-4, Issue-2.

18. Pandey Shivam, Dalvi Ankit, Chaurasia Brijesh & Patel Arshan, (2017), "A Review on the Study of Green Concrete", International Journal of Advanced Research in Science, Engineering and Technology, ISSN: 2350-0328, Vol.4, Issue 7.

Priyanshu Shekhar, Rudali Nagpurkar, Bhagyashree Selore, Prashant Sonekar, Rahul Sonaghare,
 Mr. Atul Gautam, (2017), "Green Concrete for Better Sustainable Development", International
 Research Journal of Engineering and Technology, ISSN- 2395 - 0072, Volume - 4, Issue - 3.

20. Prof. Ashok Admute, Mr. Vardhan Nagarkar, Mr. Sanket Padalkar, Ms. Samruddhi Bhamre, Mr. Akshya Tupe (2017), "Experimental Study on Green Concrete", International Research Journal of Engineering and Technology, ISSN: 2395-0056, Volume - 4, Issue - 4.

21. Dr. Arup Saha chaudhuri (2018), "High Volume Fly Ash Mixed Green Concrete for Civil Engineering Purposes", International Journal of Scientific and Engineering Research Volume 9, Issue - 10.

22. Rahul Hodge, Shrikant Shitole & Deepak Yewale, (2018) "Experimental Study on Green Concrete", International Journal of Advance Research in Science and Engineering, Volume No.7, Special Issue No.3.

References: Indian Standard Codes:

- 1. Chemical analysis and tests on cement IS: 4031.
- 2. Codes for designing concrete mixes IS: 456; 10262; SP 23.
- 3. Code of Practices for Plain & reinforced concrete etc. IS 456 2000.
- 4. Compressive strength test for cement mortar cubes IS: 2250.
- 5. Methods of sampling IS: 2430.
- 6. Methods of sampling and analysis of concrete IS: 1199.
- 7. Methods of tests for aggregate for concrete IS: 2386 . (9 parts).
- 8. Methods of test for aggregate for concrete particle size and shape IS 2386 (Part I) 1963.

9. Methods of test for aggregate for concrete estimation of deleterious materials and organic impurities. IS 2386 (Part II) 1963.

10. Methods of test for aggregate for specific gravity, density, voids, absorption & bulking IS 2386 (Part III) 1963.

- 11. Methods of test for aggregate for Mechanical properties. IS 2386 (Part IV) 1963.
- 12. Methods of test for aggregate Soundness IS 2386 (Part V) 1963.
- 13. Methods of test for aggregate for alkali-aggregate reactivity IS 2386 (Part VII) 1963.
- 14. Permissible clay, silt & fine dust contents in sand IS: 2116.
- 15. Specifications for fine & coarse aggregate from natural sources for concrete IS: 383.